X
ACHEMA MIDDLE EAST 2026
Pharma Advancement
DDF Summit 2025
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    idiopathic pulmonary fibrosis

    US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

    Tissue Repair Drug

    FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

    FastTrack Review

    US FDA Launches Fast-Track Review Scheme for Generic Drugs

    AI Based Drug Discovery

    Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

    wearable drug delivery devices

    Wearable Drug Delivery Devices for On-Demand Care

    biologic drug formulation stability

    Breakthroughs in Biologic Drug Formulation Stability

    high volume injectable formulations

    Overcoming Challenges in High-Volume Injectable Formulations

    lipid nanoparticles in RNA therapies

    Lipid Nanoparticles in RNA and Gene Therapies

    Breast Cancer Therapy

    US FDA Approves Breast Cancer Therapy Inluriyo by Eli Lilly

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    idiopathic pulmonary fibrosis

    US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

    Tissue Repair Drug

    FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

    FastTrack Review

    US FDA Launches Fast-Track Review Scheme for Generic Drugs

    AI Based Drug Discovery

    Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

    wearable drug delivery devices

    Wearable Drug Delivery Devices for On-Demand Care

    biologic drug formulation stability

    Breakthroughs in Biologic Drug Formulation Stability

    high volume injectable formulations

    Overcoming Challenges in High-Volume Injectable Formulations

    lipid nanoparticles in RNA therapies

    Lipid Nanoparticles in RNA and Gene Therapies

    Breast Cancer Therapy

    US FDA Approves Breast Cancer Therapy Inluriyo by Eli Lilly

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
Pharma Advancement
No Result
View All Result
Home News

VirScan offers new insights into COVID-19 antibody response

Content Team by Content Team
12th October 2020
in News
VirScan offers new insights into COVID-19 antibody response

Note* - All images used are for editorial and illustrative purposes only and may not originate from the original news provider or associated company.

A tool designed to detect viral history in a drop of blood has gotten an upgrade in the age of COVID-19. VirScan, a technology that can determine which of more than 1,000 different viruses have infected a person, can now also detect evidence of infection from coronaviruses, including SARS-CoV-2. In a paper published in Science, investigators from Brigham and Women’s Hospital and Harvard Medical School offer up a treasure trove of details about the antibody response to SARS-CoV-2 and how this response may differ in individuals who go on to have a more severe case of COVID-19.

“This may be the deepest serological analysis of any virus in terms of resolution,” said corresponding author Stephen Elledge, PhD, the Gregor Mendel Professor of Genetics at the Brigham and HMS. “We now understand much, much more about the antibodies generated in response to SARS-CoV-2 and how frequently they are made. The next question is, what do those antibodies do? We need to identify which antibodies have an inhibitory capacity or which, if any, may promote the virus and actually help it enter into immune cells.”

In their analysis, Elledge and colleagues looked in depth at antibody responses to SARS CoV-2 by using VirScan to analyze blood samples from 232 COVID-19 patients and 190 pre-COVID-19 era controls. The team identified 800 sites of the virus that the immune system can recognize, known as epitopes. Not all epitopes are created equal; some may be recognized by neutralizing antibodies, which can elicit a response that eliminates the infection. However, if the body creates antibodies against other epitopes, it may launch a less effective response, giving the virus an advantage. In some cases, including the related coronavirus that causes SARS, viruses may even be able to benefit from the body’s antibody response, using antibodies to enter cells in a phenomenon known as antibody-dependent enhancement.

In the case of SARS-CoV-2, the team detected a range of antibody frequencies against various epitopes. Many were public epitopes — regions recognized by the immune systems of large numbers of patients. One public epitope was recognized by 79 percent of COVID-19 patients. Others are considered private and recognized by only a few or even one individual. Ten epitopes were in regions essential for viral entry and are likely recognized by neutralizing antibodies. The team used the most discriminatory epitopes to develop a rapid diagnostic test.

The team’s epitope findings may have important implications for vaccines. If the immune system’s response to public epitopes isn’t found to be protective — or even gives the virus an advantage — vaccines will need to target other regions of the virus to give the immune system a boost.

In addition, the team found that there are several epitopes conserved across coronaviruses, and that the immune system is likely to try to reuse antibodies against them when infected with SARS-CoV-2 — a possible explanation for why so many serology tests for COVID-19 produce false positives.

The team further analyzed where and when different antibody responses occurred, finding that patients with severe COVID-19 were more likely to launch a stronger, broader response against SARS-CoV-2, possibly because their initial immune response failed to control the infection early. Within hospitalized patients, males made more antibodies than females. The researchers also compared the viral histories of hospitalized and non-hospitalized COVID-19 patients and found that hospitalized patients were much more likely to have had CMV and HSV-1, two common herpes viruses. However, the researchers note that it is difficult to draw conclusions about causality given that the group of non-hospitalized patients was younger and consisted of a higher percentage of white people and women, a demographic group that generally have lower CMV infection rates.

Elledge envisions their studies as a stepping stone for identifying the most effective antibodies and eliciting them.

“Our paper illuminates the landscape of antibody responses in COVID-19 patients,” said Elledge. “Next, we need to identify the antibodies that bind these recurrently recognized epitopes to determine whether they are neutralizing antibodies or antibodies that might exacerbate patient outcomes. This could inform the production of improved diagnostics and vaccines for SARS-CoV-2.”

Ellen Shrock, Eric Fujimura, Tomasz Kula, Richard T Timms, I-Hsiu Lee, Yumei Leng, Matthew L Robinson, Brandon M Sie, Mamie Z Li, Yuezhou Chen, Jennifer Logue, Adam Zuiani, Denise McCulloch, Felipe JN Lelis, Stephanie Henson, Daniel R Monaco, Meghan Travers, Shaghayegh Habibi, William A Clarke, Patrizio Caturegli, Oliver Laeyendecker, Alicja Piechocka-Trocha, Jon Li, Ashok Khatri, Helen Y Chu, MGH COVID-19 Collection & Processing Team, Alexandra-Chloé Villani, Kyle Kays, Marcia B Goldberg, Nir Hacohen, Michael R Filbin, Xu G Yu, Bruce D Walker, Duane R Wesemann, H Benjamin Larman, James A Lederer, Stephen J Elledge.

Previous Post

Mapi Pharma Commissions Facility to Support Supply of COVID-19 Vaccines

Next Post

Eisai Enters Joint Development Agreement for COVID-19 Therapeutics

Related Posts

idiopathic pulmonary fibrosis
Americas

US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

9th October 2025
Tissue Repair Drug
Clinical Trials

FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

7th October 2025
FastTrack Review
Americas

US FDA Launches Fast-Track Review Scheme for Generic Drugs

7th October 2025
AI Based Drug Discovery
Drug Development

Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

1st October 2025
API Manufacturing Facility
Americas

AbbVie Launches New API Manufacturing Facility in Illinois

1st October 2025
U.S. manufacturing
Americas

Amgen to Expand U.S. Manufacturing with $650M Investment

30th September 2025
Next Post
Eisai Enters Joint Development Agreement for COVID-19 Therapeutics

Eisai Enters Joint Development Agreement for COVID-19 Therapeutics

Qucik Links

  • Drug Development
  • Manufacturing
  • News
  • Events & Conferences
  • Newsletter Archive
Pharma Advancement

About Us

Pharma Advancement is a leading Pharma information centric website. On one side Pharmaadvancement.com has established itself as one of the most efficient and comprehensive source of Pharma information online, dedicated to providing decision makers in all the Pharma industry sectors with reliable, accurate and useful insights into happenings in the Pharma sector.

Subscribe Us

System

  • Search
  • Sitemap
  • RSS Feed

Resources

  • Advertise with us
  • Contact Us
  • Download Mediapack
  • Newsletters Archive

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

No Result
View All Result
  • Home
  • Articles
  • Drug Development
  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In