X
ACHEMA MIDDLE EAST 2026
Pharma Advancement
DDF Summit 2025
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    idiopathic pulmonary fibrosis

    US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

    Tissue Repair Drug

    FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

    FastTrack Review

    US FDA Launches Fast-Track Review Scheme for Generic Drugs

    AI Based Drug Discovery

    Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

    wearable drug delivery devices

    Wearable Drug Delivery Devices for On-Demand Care

    biologic drug formulation stability

    Breakthroughs in Biologic Drug Formulation Stability

    high volume injectable formulations

    Overcoming Challenges in High-Volume Injectable Formulations

    lipid nanoparticles in RNA therapies

    Lipid Nanoparticles in RNA and Gene Therapies

    Breast Cancer Therapy

    US FDA Approves Breast Cancer Therapy Inluriyo by Eli Lilly

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    idiopathic pulmonary fibrosis

    US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

    Tissue Repair Drug

    FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

    FastTrack Review

    US FDA Launches Fast-Track Review Scheme for Generic Drugs

    AI Based Drug Discovery

    Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

    wearable drug delivery devices

    Wearable Drug Delivery Devices for On-Demand Care

    biologic drug formulation stability

    Breakthroughs in Biologic Drug Formulation Stability

    high volume injectable formulations

    Overcoming Challenges in High-Volume Injectable Formulations

    lipid nanoparticles in RNA therapies

    Lipid Nanoparticles in RNA and Gene Therapies

    Breast Cancer Therapy

    US FDA Approves Breast Cancer Therapy Inluriyo by Eli Lilly

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
Pharma Advancement
No Result
View All Result
Home Americas

Studies suggest new key to ‘switching off’ hypertension

Yuvraj_pawp by Yuvraj_pawp
23rd July 2013
in Americas, News

Note* - All images used are for editorial and illustrative purposes only and may not originate from the original news provider or associated company.

A team of University of California, San Diego researchers has designed new compounds that mimic those naturally used by the body to regulate blood pressure. The most promising of them may literally be the key to controlling hypertension, switching off the signaling pathways that lead to the deadly condition.

Published online this month in Bioorganic & Medicinal Chemistry, the scientists studied the properties of the peptide called catestatin that binds nicotinic acetylcholine receptors found in the nervous system, and developed a pharmacophore model of its active centers. They next screened a library of compounds for molecules that might match this 3D “fingerprint”. The scientists then took their in-silico findings and applied them to lab experiments, uncovering compounds that successfully lowered hypertension.

“This approach demonstrates the effectiveness of rational design of novel drug candidates,” said lead author Igor F. Tsigelny, a research scientist with the university’s San Diego Supercomputer Center (SDSC), as well as the UC San Diego Moores Cancer Center and the Department of Neurosciences.

“Our results suggest that analogs can be designed to match the action of catestatin, which the body uses to regulate blood pressure,” said Daniel T. O’Connor, a professor at the UC San Diego School of Medicine and senior author of the study. “Those designer analogs could ultimately be used for treatment of hypertension or autonomic dysfunction.”

The research may lead to a new class of treatments for hypertension, a disease which affects about 76 million people, or about one in three adults, in the United States, according to the American Heart Association. Untreated, it damages the blood vessels and is a leading risk factor for kidney failure, heart attack, and stroke.

Despite being a common and lethal cardiovascular risk factor, hypertension remains only partially controlled by current antihypertensive medications, most of which have serious side effects. Specifically, the SDSC/UC San Diego researchers targeted the hormone catestatin for therapeutic potential. Catestatin acts as the gatekeeper for the secretion of catecholamines – hormones that are released into the blood during times of physical or emotional stress. A drug that mimics the action of catestatin would thus allow people to control the hormones that regulate blood pressure.

Based on earlier studies of the structure of catestatin, O’Connor, Tsigelny, and their colleagues figured out which residues of catestatin are responsible for binding to the nicotinic receptor – similar to mapping how the ridges on a key fit into a lock. They created a three-dimensional model of the most important binding centers – the pharmacophore model. Then they screened about 250,000 3D compound structures in the Open NCI Database to select ones that fit this fingerprint of active centers. They discovered seven compounds that met the requirements, and tested those compounds in live cells to gauge their effects on catecholamines. Based on their findings, they tried one compound (TKO-10-18) on hypertensive mice, and showed that this compound produced the same anti-hypertensive effect as catestatin.

“Analysis of the catestatin molecule yielded a family of small organic compounds with preserved potency and pathway specificity,” said Valentina Kouznetsova, PhD, an associate project scientist at SDSC and the UC San Diego Moores Cancer Center. “Further refinement of our model should lead to the synthesis and development of a novel class of antihypertensive agents.”

Tags: America
Previous Post

New plan of attack in cancer fight

Next Post

Researchers target HER1 receptor for peptide cancer vaccine, therapeutic agents

Related Posts

idiopathic pulmonary fibrosis
Americas

US FDA Approves Jascayd for Idiopathic Pulmonary Fibrosis

9th October 2025
Tissue Repair Drug
Clinical Trials

FDA Clears Tissue Repair Drug AD-NP1 For Clinical Trials

7th October 2025
FastTrack Review
Americas

US FDA Launches Fast-Track Review Scheme for Generic Drugs

7th October 2025
AI Based Drug Discovery
Drug Development

Bristol Myers, Takeda, Astex to Back AI Based Drug Discovery

1st October 2025
API Manufacturing Facility
Americas

AbbVie Launches New API Manufacturing Facility in Illinois

1st October 2025
U.S. manufacturing
Americas

Amgen to Expand U.S. Manufacturing with $650M Investment

30th September 2025
Next Post

Researchers target HER1 receptor for peptide cancer vaccine, therapeutic agents

Qucik Links

  • Drug Development
  • Manufacturing
  • News
  • Events & Conferences
  • Newsletter Archive
Pharma Advancement

About Us

Pharma Advancement is a leading Pharma information centric website. On one side Pharmaadvancement.com has established itself as one of the most efficient and comprehensive source of Pharma information online, dedicated to providing decision makers in all the Pharma industry sectors with reliable, accurate and useful insights into happenings in the Pharma sector.

Subscribe Us

System

  • Search
  • Sitemap
  • RSS Feed

Resources

  • Advertise with us
  • Contact Us
  • Download Mediapack
  • Newsletters Archive

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

No Result
View All Result
  • Home
  • Articles
  • Drug Development
  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In