X
Pharma Advancement
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    Avadel Pharmaceuticals Receives

    Avadel Pharmaceuticals Receives Orphan Drug Designation from FDA for LUMRYZ™ (sodium oxybate) for Extended-Release Oral Suspension for the Treatment of Idiopathic Hypersomnia

    Robots and AI in Drug

    Robots and AI in Drug Discovery Are Transforming Medicine

    Stringent Policy around COVID Vaccines Laid by FDA

    Stringent Policy around COVID Vaccines Laid by FDA

    Pharmaceutical-Chemicals Market Booms with Rising API Demand

    Pharmaceutical Chemicals Market Booms with Rising API Demand

    Next in Pharma 2025 Innovations

    Next in Pharma 2025: Innovations Shaping the Future

    Work Smart: Go for Hands-Free Lab Informatics at the Bench, Not Scribbled Notes and Delayed Documentation at Your Desk

    Clinical Development

    AI Revolutionizing Drug Discovery and Clinical Development

    Drug-Development

    China’s Super Me-Too Drug Development: A New Pharma Frontier

    Omics Based Clinical Trials

    Asia Pacific Omics-Based Clinical Trials Market Growth

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    Avadel Pharmaceuticals Receives

    Avadel Pharmaceuticals Receives Orphan Drug Designation from FDA for LUMRYZ™ (sodium oxybate) for Extended-Release Oral Suspension for the Treatment of Idiopathic Hypersomnia

    Robots and AI in Drug

    Robots and AI in Drug Discovery Are Transforming Medicine

    Stringent Policy around COVID Vaccines Laid by FDA

    Stringent Policy around COVID Vaccines Laid by FDA

    Pharmaceutical-Chemicals Market Booms with Rising API Demand

    Pharmaceutical Chemicals Market Booms with Rising API Demand

    Next in Pharma 2025 Innovations

    Next in Pharma 2025: Innovations Shaping the Future

    Work Smart: Go for Hands-Free Lab Informatics at the Bench, Not Scribbled Notes and Delayed Documentation at Your Desk

    Clinical Development

    AI Revolutionizing Drug Discovery and Clinical Development

    Drug-Development

    China’s Super Me-Too Drug Development: A New Pharma Frontier

    Omics Based Clinical Trials

    Asia Pacific Omics-Based Clinical Trials Market Growth

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
Pharma Advancement
No Result
View All Result
Home Drug Development

Using injectable self-assembled nanomaterials for sustained delivery of drugs Drug

Content Team by Content Team
13th February 2018
in Drug Development, Featured, Press Statements

Because they can be programmed to travel the body and selectively target cancer and other sites of disease, nanometer-scale vehicles called nanocarriers can deliver higher concentrations of drugs to bombard specific areas of the body while minimizing systemic side effects.

Nanocarriers can also deliver drugs and diagnostic agents that are typically not soluble in water or blood as well as significantly decrease the effective dosage.

Although this method might seem ideal for treating diseases, nanocarriers are not without their challenges.
“Controlled, sustained delivery is advantageous for treating many chronic disorders, but this is difficult to achieve with nanomaterials without inducing undesirable local inflammation,” said Northwestern University’s Evan Scott. “Instead, nanomaterials are typically administered as multiple separate injections or as a transfusion that can take longer than an hour. It would be great if physicians could give one injection, which continuously released nanomaterials over a controlled period of time.”

Now Scott, an assistant professor of biomedical engineering in Northwestern’s McCormick School of Engineering, has developed a new mechanism that makes that controlled, sustained delivery possible.

Scott’s team designed a nanocarrier formulation that – after quickly forming into a gel inside the body at the site of injection – can continuously release nanoscale drug-loaded vehicles for months. The gel itself re-assembles into the nanocarriers, so after all of the drug has been delivered, no residual material is left to induce inflammation or fibrous tissue formation. This system could, for example, enable single-administration vaccines that do not require boosters as well as a new way to deliver chemotherapy, hormone therapy, or drugs that facilitate wound healing.

Supported by the National Science Foundation and National Institutes of Health, the research was published online today, February 12 in the journal Nature Communications. Nicholas Karabin, a graduate student in Scott’s laboratory, was the paper’s first author. Northwestern Engineering’s Kenneth Shull, professor of materials science and engineering, also contributed to the work. A member of Northwestern’s Simpson Querrey Institute for BioNanotechnology and Chemistry of Life Processes Institute, Scott was corresponding author and led the nanoparticle development and in vivo validation.

Currently, the most common sustained nanocarrier delivery systems hold nanomaterials within polymer matrices. These networks are implanted into the body, where they slowly release the trapped drug carriers over a period of time. The problem lies after the delivery is complete: the networks remain inside the body, often eliciting a foreign-body response. The leftover network can cause discomfort and chronic inflammation in the patient.

To bypass this issue, Scott developed a nanocarrier using self-assembled, filament-shaped nanomaterials, which are loaded with a drug or imaging agent. When crosslinked together, the filaments form a hydrogel network that is similar to structural tissue in the human body. After the filaments are injected into the body, the resulting hydrogel network functions as a drug depot that slowly degrades by breaking down into spherical nanomaterials called micelles, which are programmed to travel to specific targets. Because the network morphs into the drug-delivery system, nothing is less behind to cause inflammation.

“All of the material holds the drug and then delivers the drug,” Scott explained. “It degrades in a controlled fashion, resulting in nanomaterials that are of equal shape and size. If we load a drug into the filaments, the micelles take the drug and leave with it.”

After testing the system both in vitro and in vivo in an animal model, Scott’s team demonstrated they could administer a subcutaneous injection that slowly delivered nanomaterials to cells in lymph nodes for over a month in a controlled fashion.

Scott said the system can be used for other nanostructures in addition to micelles. For example, the system could include vesicle-shaped nanoparticles, such as liposomes or polyersomes, that have drugs, proteins, or antibodies trapped inside. Different vesicles could carry different drugs and release them at different rates once inside the body.

“Next we are looking for ways to tailor the system to the needs of specific diseases and therapies,” Scott said. “We’re currently working to find ways to deliver chemotherapeutics and vaccines. Chemotherapy usually requires the delivery of multiple toxic drugs at high concentrations, and we could deliver all of these drugs in one injection at much lower dosages. For immunization, these injectable hydrogels could be administered like standard vaccines, but stimulate specific cells of the immune system for longer, controlled periods of time and potentially avoid the need for boosters.”

Previous Post

Gemphire Announces Initiation of Phase 2a Clinical Trial of Gemcabene in Pediatric Non-Alcoholic Fatty Liver Disease

Next Post

Chinese researchers report first lung stem cell transplantation clinical trial

Related Posts

Avadel Pharmaceuticals Receives
Drug Development

Avadel Pharmaceuticals Receives Orphan Drug Designation from FDA for LUMRYZ™ (sodium oxybate) for Extended-Release Oral Suspension for the Treatment of Idiopathic Hypersomnia

9th June 2025
Robots and AI in Drug
Articles

Robots and AI in Drug Discovery Are Transforming Medicine

29th May 2025
Stringent Policy around COVID Vaccines Laid by FDA
FDA Approvals

Stringent Policy around COVID Vaccines Laid by FDA

29th May 2025
Pharmaceutical-Chemicals Market Booms with Rising API Demand
Asia

Pharmaceutical Chemicals Market Booms with Rising API Demand

28th May 2025
Next in Pharma 2025 Innovations
Articles

Next in Pharma 2025: Innovations Shaping the Future

28th May 2025
Insights

Work Smart: Go for Hands-Free Lab Informatics at the Bench, Not Scribbled Notes and Delayed Documentation at Your Desk

27th May 2025
Next Post

Chinese researchers report first lung stem cell transplantation clinical trial

Qucik Links

  • Drug Development
  • Manufacturing
  • News
  • Events & Conferences
  • Newsletter Archive
Pharma Advancement

About Us

Pharma Advancement is a leading Pharma information centric website. On one side Pharmaadvancement.com has established itself as one of the most efficient and comprehensive source of Pharma information online, dedicated to providing decision makers in all the Pharma industry sectors with reliable, accurate and useful insights into happenings in the Pharma sector.

Subscribe Us

System

  • Search
  • Sitemap
  • RSS Feed

Resources

  • Advertise with us
  • Contact Us
  • Download Mediapack
  • Newsletters Archive

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

No Result
View All Result
  • Home
  • Articles
  • Drug Development
  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In