X
Pharma Advancement
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    FDA Accepts BLA for Recommended

    FDA Accepts BLA for Recommended Biosimilar to Simponi

    Merck to Acquire Verona

    Merck to Acquire Verona Pharma in $10B Deal Boosts COPD Drug

    Emerging Oral Small Molecule Drugs

    Emerging Oral Small-Molecule Drugs for Ultra-Rare Diseases

    FDA Approves Oral Therapy for Treating Hereditary Angioedema

    FDA Approves Oral Therapy for Treating Hereditary Angioedema

    Avadel Pharmaceuticals Receives

    Avadel Pharmaceuticals Receives Orphan Drug Designation from FDA for LUMRYZ™ (sodium oxybate) for Extended-Release Oral Suspension for the Treatment of Idiopathic Hypersomnia

    Robots and AI in Drug

    Robots and AI in Drug Discovery Are Transforming Medicine

    Stringent Policy around COVID Vaccines Laid by FDA

    Stringent Policy around COVID Vaccines Laid by FDA

    Pharmaceutical-Chemicals Market Booms with Rising API Demand

    Pharmaceutical Chemicals Market Booms with Rising API Demand

    Next in Pharma 2025 Innovations

    Next in Pharma 2025: Innovations Shaping the Future

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
  • Home
  • Articles
  • Drug Development
    • All
    • Clinical Trials
    • FDA Approvals
    • Research & Development
    FDA Accepts BLA for Recommended

    FDA Accepts BLA for Recommended Biosimilar to Simponi

    Merck to Acquire Verona

    Merck to Acquire Verona Pharma in $10B Deal Boosts COPD Drug

    Emerging Oral Small Molecule Drugs

    Emerging Oral Small-Molecule Drugs for Ultra-Rare Diseases

    FDA Approves Oral Therapy for Treating Hereditary Angioedema

    FDA Approves Oral Therapy for Treating Hereditary Angioedema

    Avadel Pharmaceuticals Receives

    Avadel Pharmaceuticals Receives Orphan Drug Designation from FDA for LUMRYZ™ (sodium oxybate) for Extended-Release Oral Suspension for the Treatment of Idiopathic Hypersomnia

    Robots and AI in Drug

    Robots and AI in Drug Discovery Are Transforming Medicine

    Stringent Policy around COVID Vaccines Laid by FDA

    Stringent Policy around COVID Vaccines Laid by FDA

    Pharmaceutical-Chemicals Market Booms with Rising API Demand

    Pharmaceutical Chemicals Market Booms with Rising API Demand

    Next in Pharma 2025 Innovations

    Next in Pharma 2025: Innovations Shaping the Future

  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us
No Result
View All Result
Pharma Advancement
No Result
View All Result
Home Europe

Targeted viral therapy destroys breast cancer stem cells in preclinical experiments

Yuvraj_pawp by Yuvraj_pawp
25th June 2013
in Europe, News

Note* - All images used are for editorial and illustrative purposes only and may not originate from the original news provider or associated company.

A promising new treatment for breast cancer being developed at Virginia Commonwealth University Massey Cancer Center and the VCU Institute of Molecular Medicine (VIMM) has been shown in cell culture and in animal models to selectively kill cancer stem cells at the original tumor site and in distant metastases with no toxic effects on healthy cells, including normal stem cells.

Cancer stem cells are critical to a cancer’s ability to recur following conventional chemotherapies and radiation therapy because they can quickly multiply and establish new tumors that are often therapy resistant.

The study, published in the International Journal of Cancer, focuses on a gene originally cloned in the laboratory of primary investigator Paul B. Fisher, M.Ph., Ph.D. The gene, melanoma differentiation associated gene-7 (mda-7), also known as interleukin (IL)-24, has been shown to directly impact two forms of cell suicide known as apoptosis and toxic autophagy, regulate the development of new blood vessels and also play a role in promoting cancer cell destruction by the immune system. In the present study, the researchers used a recombinant adenovirus vector, an engineered virus with modified genetic material, known as Ad.mda-7 to deliver the mda-7/IL-24 gene with its encoded protein directly to the tumor.

“Therapy with the mda-7/IL-24 gene has been shown to be safe in a phase I clinical trial involving patients with advanced cancers, and prior studies in my laboratory and with collaborators have shown that the gene could also be effective against breast, prostate, lung, colorectal, ovarian, pancreatic and brain cancers,” says Fisher, Thelma Newmeyer Corman Endowed Chair in Cancer Research and co-leader of the Cancer Molecular Genetics program at VCU Massey, chairman of VCU School of Medicine’s Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine. “Our study demonstrates that this therapy may someday be an effective way to eradicate both early and advanced stage breast cancer, and could even be used to reduce the risk of cancer recurrence.”

The researchers found that infection of human breast cancer cells with the adenovirus decreased the proliferation of breast cancer stem cells without affecting normal breast stem cells. It was also shown to induce a stress response in the cells that led to apoptosis by disrupting Wnt/B-catenin signaling, a process cells rely upon to transmit signals that initiate biological functions critical to survival. In mouse models, the therapy profoundly inhibited the growth of tumors generated from breast cancer stem cells and also killed cancer cells in distant, uninjected tumors.

Since discovering the mda-7/IL-24 gene, Fisher and his team have worked to develop better ways to deliver it to cancer cells, including two cancer “terminator” viruses known as Ad.5-CTV and Ad.5/3-CTV. Cancer terminator viruses are unique because they are designed to replicate only within cancer cells while delivering immune-modulating and toxic genes such as MDA-7/IL-24. Coupled with a novel stealth delivery technique known as ultrasound-targeted microbubble destruction (UTMD), researchers can now systemically deliver viruses and therapeutic genes and proteins directly to tumors and their surrounding tissue (microenvironment) at both primary and metastatic tumor sites. UTMD uses microscopic, gas-filled bubbles that can be paired with viral therapies, therapeutic genes and proteins, and imaging agents and can then be released in a site and target-specific manner via ultrasound. Fisher and his colleagues are pioneering this approach and have already reported success in experiments utilizing UTMD technology and mda-7/IL-24 gene therapy in prostate and colorectal cancer models.

“We are hopeful that this targeted gene therapy could be safely combined with conventional chemotherapies to significantly improve outcomes for patients with breast cancer and potentially a variety of other cancers,” says Fisher. “When paired with promising new delivery techniques such as UTMD, physicians may one day be able to better target site-specific cancers and also monitor the effectiveness of these types of therapies in real time.”

Tags: Europe
Previous Post

FDA obtains waiver from European Commission to facilitate export for U.S. pharmaceutical manufacturers

Next Post

FDA takes action to protect consumers from dangerous medicines sold by illegal online pharmacies

Related Posts

FDA Accepts BLA for Recommended
FDA Approvals

FDA Accepts BLA for Recommended Biosimilar to Simponi

22nd July 2025
Merck to Acquire Verona
Drug Development

Merck to Acquire Verona Pharma in $10B Deal Boosts COPD Drug

21st July 2025
ChiRhoClin LogiCare3PL Partners for Drug Distribution
News

ChiRhoClin, LogiCare3PL Partners for Drug Distribution

21st July 2025
Thermo Fisher and Sanofi Partners
Manufacturing

Thermo Fisher and Sanofi Partners for US Drug Manufacturing

21st July 2025
EMA Recommendations to Secure Anti D Immunoglobulins Supply
News

EMA Recommendations to Secure Anti-D Immunoglobulins Supply

15th July 2025
FDA Approves Oral Therapy for Treating Hereditary Angioedema
FDA Approvals

FDA Approves Oral Therapy for Treating Hereditary Angioedema

15th July 2025
Next Post

FDA takes action to protect consumers from dangerous medicines sold by illegal online pharmacies

Qucik Links

  • Drug Development
  • Manufacturing
  • News
  • Events & Conferences
  • Newsletter Archive
Pharma Advancement

About Us

Pharma Advancement is a leading Pharma information centric website. On one side Pharmaadvancement.com has established itself as one of the most efficient and comprehensive source of Pharma information online, dedicated to providing decision makers in all the Pharma industry sectors with reliable, accurate and useful insights into happenings in the Pharma sector.

Subscribe Us

System

  • Search
  • Sitemap
  • RSS Feed

Resources

  • Advertise with us
  • Contact Us
  • Download Mediapack
  • Newsletters Archive

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

No Result
View All Result
  • Home
  • Articles
  • Drug Development
  • Manufacturing
  • Supply Chain
  • Facilities
  • Insights
  • Events
  • Contact Us

© 2017 Copyright © Valuemediaservices 2017 All rights reserved.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In